Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

Alessandro Vignati IMJ-PRG - Université Paris Diderot

Winter School in Abstract Analysis section Set Theory and Topology Hejnice, 27 January 2018 X always denotes a second-countable locally compact Hausdorff space.

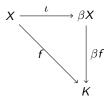
◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ <

X always denotes a second-countable locally compact Hausdorff space. βX is its Čech-Stone compactification that is "the largest compact space in which X is dense and open" or

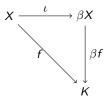
• • = • • = •

э

X always denotes a second-countable locally compact Hausdorff space. βX is its Čech-Stone compactification that is "the largest compact space in which X is dense and open" or the compact Hausdorff space satisfying the following universal property: there is a continuous injection $\iota: X \to \beta X$ such that whenever K is compact Hausdorff and $f: X \to K$ is continuous there is a unique continuous map $\beta f: \beta X \to K$ such that



X always denotes a second-countable locally compact Hausdorff space. βX is its Čech-Stone compactification that is "the largest compact space in which X is dense and open" or the compact Hausdorff space satisfying the following universal property: there is a continuous injection $\iota: X \to \beta X$ such that whenever K is compact Hausdorff and $f: X \to K$ is continuous there is a unique continuous map $\beta f: \beta X \to K$ such that



We will omit ι , and identify X with $\iota[X]$. The space $X^* = \beta X \setminus X$ is the Čech-Stone remainder of X.

 If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.

《曰》 《聞》 《臣》 《臣》

æ

- If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.
- βX is unique, and can be identified with the set of all ultrafilters on the zero-sets of X. In this case X is identified with the principal ultrafilters;

イロト イポト イヨト イヨト

3

- If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.
- βX is unique, and can be identified with the set of all ultrafilters on the zero-sets of X. In this case X is identified with the principal ultrafilters;
- Exercise: βX is never second-countable unless X is compact (then $X = \beta X$).

イロト イポト イヨト イヨト

3

- If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.
- βX is unique, and can be identified with the set of all ultrafilters on the zero-sets of X. In this case X is identified with the principal ultrafilters;
- Exercise: βX is never second-countable unless X is compact (then $X = \beta X$).
- If X is second-countable and noncompact, X* is not second-countable. Second-countability of X is needed (e.g., X = ω₁..).

э.

- If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.
- βX is unique, and can be identified with the set of all ultrafilters on the zero-sets of X. In this case X is identified with the principal ultrafilters;
- Exercise: βX is never second-countable unless X is compact (then $X = \beta X$).
- If X is second-countable and noncompact, X^{*} is not second-countable. Second-countability of X is needed (e.g., X = ω₁..).
- If X is locally compact, there are three C*-algebras associated to X:
 C₀(X) (=cnts functions vanishing at infinity), C_b(X) (=cnts bounded functions) and C(X*) (=cnts functions on X*).

э.

- If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.
- βX is unique, and can be identified with the set of all ultrafilters on the zero-sets of X. In this case X is identified with the principal ultrafilters;
- Exercise: βX is never second-countable unless X is compact (then $X = \beta X$).
- If X is second-countable and noncompact, X* is not second-countable. Second-countability of X is needed (e.g., X = ω₁..).
- If X is locally compact, there are three C*-algebras associated to X: $C_0(X)$ (=cnts functions vanishing at infinity), $C_b(X)$ (=cnts bounded functions) and $C(X^*)$ (=cnts functions on X*). In this case, homeomorphisms of X* are automorphisms of $C(X^*)$ and there is a canonical quotient map $\pi_X: C_b(X) \to C(X^*) = C_b(X)/C_0(X)$

イロト イポト イヨト イヨト 二日

- If X is just Tychonoff such a ι still exists. In fact ι[X] is open in βX if and only if X is locally compact.
- βX is unique, and can be identified with the set of all ultrafilters on the zero-sets of X. In this case X is identified with the principal ultrafilters;
- Exercise: βX is never second-countable unless X is compact (then $X = \beta X$).
- If X is second-countable and noncompact, X^{*} is not second-countable. Second-countability of X is needed (e.g., X = ω₁..).
- If X is locally compact, there are three C*-algebras associated to X: $C_0(X)$ (=cnts functions vanishing at infinity), $C_b(X)$ (=cnts bounded functions) and $C(X^*)$ (=cnts functions on X*). In this case, homeomorphisms of X* are automorphisms of $C(X^*)$ and there is a canonical quotient map $\pi_X: C_b(X) \to C(X^*) = C_b(X)/C_0(X)$
- If φ ∈ Homeo(X*) and φ̃ ∈ Aut(C(X*)) is the dual isomorphism we say that Φ̃: C_b(X) → C_b(X) is a lifting for φ̃ if it lifts:

$$\pi_X(\tilde{\Phi}(a)) = \tilde{\phi}(\pi_X(a)), \ a \in C_b(X).$$

We study the homeomorphisms of such spaces. Let's start with \mathbb{N} .

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

イロト イヨト イヨト イヨト

э.

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

э

Suppose that $f : \mathbb{N} \to \mathbb{N}$ is a "permutation modulo finite" that is, there are finite $F_1, F_2 \subset \mathbb{N}$ such that $f \upharpoonright \mathbb{N} \setminus F_1 \to \mathbb{N} \setminus F_2$ is a bijection. Then $\beta f \upharpoonright \mathbb{N}^*$ is an homeomorphism.

イロト イポト イヨト イヨト

Suppose that $f: \mathbb{N} \to \mathbb{N}$ is a "permutation modulo finite" that is, there are finite $F_1, F_2 \subset \mathbb{N}$ such that $f \upharpoonright \mathbb{N} \setminus F_1 \to \mathbb{N} \setminus F_2$ is a bijection. Then $\beta f \upharpoonright \mathbb{N}^*$ is an homeomorphism.

Definition

 $\phi \in \text{Homeo}(\mathbb{N}^*)$ is said **trivial** if there is an almost permutation such that $\phi(x) = \{f[A] \mid A \in x\}$ for all $x \in \mathbb{N}^*$. (equivalently $\phi = \beta f \upharpoonright \mathbb{N}^*$).

Suppose that $f: \mathbb{N} \to \mathbb{N}$ is a "permutation modulo finite" that is, there are finite $F_1, F_2 \subset \mathbb{N}$ such that $f \upharpoonright \mathbb{N} \setminus F_1 \to \mathbb{N} \setminus F_2$ is a bijection. Then $\beta f \upharpoonright \mathbb{N}^*$ is an homeomorphism.

Definition

 $\phi \in \text{Homeo}(\mathbb{N}^*)$ is said **trivial** if there is an almost permutation such that $\phi(x) = \{f[A] \mid A \in x\}$ for all $x \in \mathbb{N}^*$. (equivalently $\phi = \beta f \upharpoonright \mathbb{N}^*$).

Note that there are only c trivial homeomorphisms.

Suppose that $f: \mathbb{N} \to \mathbb{N}$ is a "permutation modulo finite" that is, there are finite $F_1, F_2 \subset \mathbb{N}$ such that $f \upharpoonright \mathbb{N} \setminus F_1 \to \mathbb{N} \setminus F_2$ is a bijection. Then $\beta f \upharpoonright \mathbb{N}^*$ is an homeomorphism.

Definition

 $\phi \in \text{Homeo}(\mathbb{N}^*)$ is said **trivial** if there is an almost permutation such that $\phi(x) = \{f[A] \mid A \in x\}$ for all $x \in \mathbb{N}^*$. (equivalently $\phi = \beta f \upharpoonright \mathbb{N}^*$).

Note that there are only c trivial homeomorphisms.

Question

Are all homeomorphisms of \mathbb{N}^* trivial?

Are all homeomorphisms of \mathbb{N}^* trivial?

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 9 9 5/22

Are all homeomorphisms of \mathbb{N}^* trivial?

Theorem

• (Rudin) Assume CH. Then there are nontrivial homeomorphisms of \mathbb{N}^* . In fact there are $2^{\aleph_1} > \mathfrak{c}$ homeomorphisms.

イロト イ部ト イヨト イヨト

э.

Are all homeomorphisms of \mathbb{N}^* trivial?

Theorem

- (Rudin) Assume CH. Then there are nontrivial homeomorphisms of \mathbb{N}^* . In fact there are $2^{\aleph_1} > \mathfrak{c}$ homeomorphisms.
- (Shelah, Shelah-Steprans, Velickovic) It is consistent that all homeomorphisms of N^{*} are trivial. In fact, it follows from Forcing Axioms.

3

Are all homeomorphisms of \mathbb{N}^* trivial?

Theorem

- (Rudin) Assume CH. Then there are nontrivial homeomorphisms of \mathbb{N}^* . In fact there are $2^{\aleph_1} > \mathfrak{c}$ homeomorphisms.
- (Shelah, Shelah-Steprans, Velickovic) It is consistent that all homeomorphisms of N^{*} are trivial. In fact, it follows from Forcing Axioms.

History fact: Rudin ('56) wasn't trying to prove the existence of nontrivial homeomorphisms. He was in fact trying to show that \mathbb{N}^* was not homogeneous, and used CH to do so, constructing at the same time 2^{\aleph_1} homeomorphisms of \mathbb{N}^* .

Are all homeomorphisms of \mathbb{N}^* trivial?

Theorem

- (Rudin) Assume CH. Then there are nontrivial homeomorphisms of \mathbb{N}^* . In fact there are $2^{\aleph_1} > \mathfrak{c}$ homeomorphisms.
- (Shelah, Shelah-Steprans, Velickovic) It is consistent that all homeomorphisms of N^{*} are trivial. In fact, it follows from Forcing Axioms.

History fact: Rudin ('56) wasn't trying to prove the existence of nontrivial homeomorphisms. He was in fact trying to show that \mathbb{N}^* was not homogeneous, and used CH to do so, constructing at the same time 2^{\aleph_1} homeomorphisms of \mathbb{N}^* .

History fact 2: Shelah's proof ('82) is done with Forcing. Shelah-Steprans ('88) assumed PFA, while Velickovic ('93) showed that Todorcevic's OCA and Martin's Axiom (both consequences of PFA) are enough.

An homeomorphism ϕ of X^* is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

イロト イポト イヨト イヨト

æ

An homeomorphism ϕ of X^* is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

Question

Are all homeomorphisms of X^* trivial?

イロト イポト イヨト イヨト

臣

An homeomorphism ϕ of X^* is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

Question

Are all homeomorphisms of X^* trivial?

Exercise: there are only c trivial homeomorphisms.

イロト イポト イヨト イヨト

3

An homeomorphism ϕ of X^* is trivial if there are compact sets $K_1, K_2 \subseteq X$ and an homeomorphism $f: X \setminus K_1 \to X \setminus K_2$ such that $\phi(x) = \{f(C) \mid C \in x\}$.

Question

Are all homeomorphisms of X^* trivial?

Exercise: there are only ${\mathfrak c}$ trivial homeomorphisms.

Conjecture

Suppose X is noncompact.

- CH implies there are nontrivial homeomorphisms of X*;
- PFA (or less) implies all homeomorphisms of X^{*} are trivial.

• X^* is zero-dimensional and has no isolated points. Also, it has weight \mathfrak{c}

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

イロト イヨト イヨト イヨト

- X^* is zero-dimensional and has no isolated points. Also, it has weight \mathfrak{c}
- all nonempty G_{δ} subsets of X^* have nonempty interior

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- X^* is zero-dimensional and has no isolated points. Also, it has weight \mathfrak{c}
- all nonempty G_{δ} subsets of X^* have nonempty interior
- all pairs of disjoint open F_{σ} subsets of X^* have disjoint closure

- X^* is zero-dimensional and has no isolated points. Also, it has weight \mathfrak{c}
- all nonempty G_{δ} subsets of X^* have nonempty interior
- all pairs of disjoint open F_{σ} subsets of X^* have disjoint closure

Theorem (Second Parovicenko's Theorem)

Assume CH. Every space with such properties is homeomorphic to \mathbb{N}^* . So there are $2^{\mathfrak{c}}$ homeomorphisms of X^* , and hence nontrivial ones.

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Velickovic
dim(X) = 0	Parovicenko	

< □ > < @ > < E > < E > E の Q @ _{8/22}

$$CL(X) = \{a = \overline{a} \subseteq X\}$$

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

イロト イヨト イヨト イヨト

990

9/22

æ

$$CL(X) = \{a = \overline{a} \subseteq X\}$$

For $a \in CL(X)$, let $a^* = \beta a \setminus a$ the correspondent closed set in X^* .

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

・ロト ・日ト ・ヨト ・ヨト

э.

$$CL(X) = \{a = \overline{a} \subseteq X\}$$

For $a \in CL(X)$, let $a^* = \beta a \setminus a$ the correspondent closed set in X^* .

Definition

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

イロト イポト イヨト イヨト

3

$$CL(X) = \{a = \overline{a} \subseteq X\}$$

For $a \in CL(X)$, let $a^* = \beta a \setminus a$ the correspondent closed set in X^* .

Definition

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

Proposition

If ϕ is trivial, ϕ has a representation.

臣

$$CL(X) = \{a = \overline{a} \subseteq X\}$$

For $a \in CL(X)$, let $a^* = \beta a \setminus a$ the correspondent closed set in X^* .

Definition

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

Proposition

If ϕ is trivial, ϕ has a representation.

Theorem (Yu)

Assume CH. There is an homeomorphism of $[0,1)^*$ with no representation.

This was later refined (see K.P. Hart's work) to construct 2^{c} homeomorphisms of $[0, 1)^{*}$ (again, under CH).

DQC 9/22

- $C_b(X) \cong C(\beta X);$
- $C_b(X)/C_0(X) \cong C(X^*);$
- Homeomorphisms of X^* correspond to automorphisms of $C(X^*)$.

- $C_b(X) \cong C(\beta X);$
- $C_b(X)/C_0(X) \cong C(X^*);$
- Homeomorphisms of X^* correspond to automorphisms of $C(X^*)$.

These objects have their own model theory associated in the setting of continuous model theory for $\mathrm{C}^*\text{-algebras}$. In this setting, under CH, countably saturated objects of density $\mathfrak c$ have $2^\mathfrak c$ automorphisms.

イロト イポト イヨト イヨト 二日

- $C_b(X) \cong C(\beta X);$
- $C_b(X)/C_0(X) \cong C(X^*);$
- Homeomorphisms of X^* correspond to automorphisms of $C(X^*)$.

These objects have their own model theory associated in the setting of continuous model theory for $\mathrm{C}^*\text{-algebras}$. In this setting, under CH, countably saturated objects of density $\mathfrak c$ have $2^{\mathfrak c}$ automorphisms.

Theorem (Farah-Shelah)

If X_i , $i \in \mathbb{N}$, are compact second-countable spaces and $X = \sqcup X_i$ then $C(X^*)$ is countably saturated. So, under CH, X^* has nontrivial homeomorphisms.

- $C_b(X) \cong C(\beta X);$
- $C_b(X)/C_0(X) \cong C(X^*);$
- Homeomorphisms of X^* correspond to automorphisms of $C(X^*)$.

These objects have their own model theory associated in the setting of continuous model theory for $\mathrm{C}^*\text{-algebras}$. In this setting, under CH, countably saturated objects of density $\mathfrak c$ have $2^{\mathfrak c}$ automorphisms.

Theorem (Farah-Shelah)

If X_i , $i \in \mathbb{N}$, are compact second-countable spaces and $X = \sqcup X_i$ then $C(X^*)$ is countably saturated. So, under CH, X^* has nontrivial homeomorphisms.

This is the nicest existing proof, but the existence of nontrivial homeomorphisms of X^* for $X = \sqcup X_i$ was originally obtained by Coskey and Farah.

イロト イポト イヨト イヨト 二日

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Velickovic
dim(X) = 0	Parovicenko	
$X = [0, 1), X = \mathbb{R}$	Yu (but see K.P. Hart)	
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah, Farah-Shelah	

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪

The most natural instances of higher dimensional connected spaces for which is was unknown whether CH implies the existence of nontrivial homeomorphisms were given by $X = \mathbb{R}^n$, for $n \ge 2$.

E

The most natural instances of higher dimensional connected spaces for which is was unknown whether CH implies the existence of nontrivial homeomorphisms were given by $X = \mathbb{R}^n$, for $n \ge 2$.

Theorem (V., '16)

Let X be a second-countable noncompact manifold and assume CH. Then X^* has nontrivial homeomorphisms.

The most natural instances of higher dimensional connected spaces for which is was unknown whether CH implies the existence of nontrivial homeomorphisms were given by $X = \mathbb{R}^n$, for $n \ge 2$.

Theorem (V., '16)

Let X be a second-countable noncompact manifold and assume CH. Then X^* has nontrivial homeomorphisms.

Sketch of the proof: (for \mathbb{R}^n). Fix open sets $U_i = \{x \mid d(x, (0, i)) < 1/3\}$. From this, for $f \in \mathbb{N}^{\mathbb{N}^{\uparrow}}$ we can define

- C_f , a subalgebra of $C(X^*)$ and
- ϕ_f , an homeomorphism of X^*

such that

- $C(X^*) = \bigcup C_f;$
- $f \leq^* g$ implies $C_f \subseteq C_g$
- ϕ_f is the identity on C_f
- if $\forall^{\infty} n(nf(n) \leq g(n))$, there is $a \in C_g$ such that $\phi_f(a) \neq a$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

<u>Sketch of the proof</u>: (for \mathbb{R}^n , continued): Note that $\mathfrak{d} = \omega_1$, and fix a cofinal sequence, in $(\mathbb{N}^{\mathbb{N}}, \leq^*)$, of increasing functions such that $nf_{\alpha}(n) \leq f_{\alpha+1}(n)$ for all $\alpha < \omega_1$.

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

<u>Sketch of the proof:</u> (for \mathbb{R}^n , continued): Note that $\mathfrak{d} = \omega_1$, and fix a cofinal sequence, in $(\mathbb{N}^{\mathbb{N}}, \leq^*)$, of increasing functions such that $nf_{\alpha}(n) \leq f_{\alpha+1}(n)$ for all $\alpha < \omega_1$. Since we were careful enough in choosing the C_f 's and the ϕ_f 's, and we only have to care about countable steps, for all $p \in 2^{\omega_1}$ we can define an homeomorphism ϕ_p of X^* , with the property that $p \neq q \Rightarrow \phi_p \neq \phi_q$.

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

イロト イポト イヨト イヨト 二日

<u>Sketch of the proof:</u> (for \mathbb{R}^n , continued): Note that $\mathfrak{d} = \omega_1$, and fix a cofinal sequence, in $(\mathbb{N}^{\mathbb{N}}, \leq^*)$, of increasing functions such that $nf_{\alpha}(n) \leq f_{\alpha+1}(n)$ for all $\alpha < \omega_1$. Since we were careful enough in choosing the C_f 's and the ϕ_f 's, and we only have to care about countable steps, for all $p \in 2^{\omega_1}$ we can define an homeomorphism ϕ_p of X^* , with the property that $p \neq q \Rightarrow \phi_p \neq \phi_q$. Apply weak CH $(2^{\aleph_0} < 2^{\aleph_1})$.

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

イロト イポト イヨト イヨト 二日

<u>Sketch of the proof:</u> (for \mathbb{R}^n , continued): Note that $\mathfrak{d} = \omega_1$, and fix a cofinal sequence, in $(\mathbb{N}^{\mathbb{N}}, \leq^*)$, of increasing functions such that $nf_{\alpha}(n) \leq f_{\alpha+1}(n)$ for all $\alpha < \omega_1$. Since we were careful enough in choosing the C_f 's and the ϕ_f 's, and we only have to care about countable steps, for all $p \in 2^{\omega_1}$ we can define an homeomorphism ϕ_p of X^* , with the property that $p \neq q \Rightarrow \phi_p \neq \phi_q$. Apply weak CH $(2^{\aleph_0} < 2^{\aleph_1})$.

Theorem (V., '16)

Let X be a second-countable noncompact manifold and assume CH. Then X^* has nontrivial homeomorphisms.

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

<u>Sketch of the proof:</u> (for \mathbb{R}^n , continued): Note that $\mathfrak{d} = \omega_1$, and fix a cofinal sequence, in $(\mathbb{N}^{\mathbb{N}}, \leq^*)$, of increasing functions such that $nf_{\alpha}(n) \leq f_{\alpha+1}(n)$ for all $\alpha < \omega_1$. Since we were careful enough in choosing the C_f 's and the ϕ_f 's, and we only have to care about countable steps, for all $p \in 2^{\omega_1}$ we can define an homeomorphism ϕ_p of X^* , with the property that $p \neq q \Rightarrow \phi_p \neq \phi_q$. Apply weak CH $(2^{\aleph_0} < 2^{\aleph_1})$.

Theorem (V., '16)

Let X be a second-countable noncompact manifold and assume CH. Then X^* has nontrivial homeomorphisms.

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Velickovic
dim(X) = 0	Parovicenko	
$X = [0, 1), X = \mathbb{R}$	Yu (but see K.P. Hart)	
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah, Farah-Shelah	
X manifold	V.	

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

PFA, the low dimensional case

Conjecture

Assume Forcing Axiom. Then all homeomorphisms of X^* are trivial.

(日) (部) (王) (王) (王)

990

PFA, the low dimensional case

Conjecture

Assume Forcing Axiom. Then all homeomorphisms of X^* are trivial.

The first attempts to generalize Shelah's intuition was done by Farah.

DQC

Conjecture

Assume Forcing Axiom. Then all homeomorphisms of X^* are trivial.

The first attempts to generalize Shelah's intuition was done by Farah. He attacked the question on when $\alpha^* (= \beta \alpha \setminus \alpha)$ and β^* could be isomorphic, for countable ordinals $\alpha \neq \beta$.

イロト イ部ト イモト イモト 一日

Conjecture

Assume Forcing Axiom. Then all homeomorphisms of X^* are trivial.

The first attempts to generalize Shelah's intuition was done by Farah. He attacked the question on when $\alpha^* (= \beta \alpha \setminus \alpha)$ and β^* could be isomorphic, for countable ordinals $\alpha \neq \beta$. If $\phi : \alpha^* \to \beta^*$ is an homeomorphism, he proved, under Forcing Axioms, the existence of a well behaved lifting of the form:

Conjecture

Assume Forcing Axiom. Then all homeomorphisms of X^* are trivial.

The first attempts to generalize Shelah's intuition was done by Farah. He attacked the question on when $\alpha^* (= \beta \alpha \setminus \alpha)$ and β^* could be isomorphic, for countable ordinals $\alpha \neq \beta$. If $\phi : \alpha^* \to \beta^*$ is an homeomorphism, he proved, under Forcing Axioms, the existence of a well behaved lifting of the form:

and used it to get

Theorem (Farah)

Assume Forcing Axioms and let $\alpha < \omega_1$ be a limit. Then all homeomorphisms of α^* are trivial. Also if α^* is homeomorphic to β^* then $\alpha = \beta$.

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

DQC

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

Theorem (Farah-Shelah, '15)

Let X be second countable and assume Forcing Axioms. Let $\phi \in \text{Homeo}(X^*)$ such that both ϕ and ϕ^{-1} have a representation. Then ϕ is trivial.

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

Theorem (Farah-Shelah, '15)

Let X be second countable and assume Forcing Axioms. Let $\phi \in \text{Homeo}(X^*)$ such that both ϕ and ϕ^{-1} have a representation. Then ϕ is trivial.

Theorem (Farah-McKenney, '12)

Let X be 0-dimensional and second countable and assume Forcing Axioms. Then all homeomorphisms of X^* are trivial.

An homeomorphism ϕ of X^* has a **representation** if for all $a \in CL(X)$ there is $b \in CL(X)$ such that $\phi[a^*] = b^*$.

Theorem (Farah-Shelah, '15)

Let X be second countable and assume Forcing Axioms. Let $\phi \in \text{Homeo}(X^*)$ such that both ϕ and ϕ^{-1} have a representation. Then ϕ is trivial.

Theorem (Farah-McKenney, '12)

Let X be 0-dimensional and second countable and assume Forcing Axioms. Then all homeomorphisms of X^* are trivial.

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = [0,1), X = \mathbb{R}$	Yu (but see K.P. Hart)	
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah, Farah-Shelah	
X manifold	V.	

Let $D(X) = \{a = \overline{a} \subseteq X \mid a \text{ is countable and discrete}\}.$

Definition

An homeomorphism ϕ of X^* has a **local representation** if for all $a \in D(X)$ there is $b \in D(X)$ such that $\phi[a^*] = b^*$.

Alessandro VignatilMJ-PRG - Université Paris Diderot Triviality and nontriviality of homeomorphisms of Čech-Stone remainders

(日) (部) (王) (王) (王)

Sac

Let $D(X) = \{a = \overline{a} \subseteq X \mid a \text{ is countable and discrete}\}.$

Definition

An homeomorphism ϕ of X^* has a **local representation** if for all $a \in D(X)$ there is $b \in D(X)$ such that $\phi[a^*] = b^*$.

Lemma

Assume Forcing Axioms, let X be second countable and suppose that $\phi \in \text{Homeo}(X^*)$. If both ϕ and ϕ^{-1} have a local representation, then they have a representation.

(日) (部) (王) (王) (王)

DQC

Let $D(X) = \{a = \overline{a} \subseteq X \mid a \text{ is countable and discrete}\}.$

Definition

An homeomorphism ϕ of X^* has a **local representation** if for all $a \in D(X)$ there is $b \in D(X)$ such that $\phi[a^*] = b^*$.

Lemma

Assume Forcing Axioms, let X be second countable and suppose that $\phi \in \text{Homeo}(X^*)$. If both ϕ and ϕ^{-1} have a local representation, then they have a representation.

(This proof is a modification of Farah and Shelah's proof. Nothing fancy here.)

DQC

Assume Forcing Axioms and suppose that X is connected and second-countable. Then all homeomorphisms of X^* have a local representation.

Image: A matrix and a matrix

3 N K 3 N

Sac

臣

Assume Forcing Axioms and suppose that X is connected and second-countable. Then all homeomorphisms of X^* have a local representation. So they're all trivial.

Image: A matrix and a matrix

글 네 글 네 글 네 크

Sac

臣

Assume Forcing Axioms and suppose that X is connected and second-countable. Then all homeomorphisms of X^* have a local representation. So they're all trivial.

• If $\phi \in \text{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.

- If $\phi \in \operatorname{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.
- For $a \in D(X)$, say $a = \{a_n\}$, we find open sets U_n with disjoint closure such that $a_n \in U_n$. Note that $\prod C_0(U_n) / \bigoplus C_0(U_n) \subseteq C(X^*)$.

- If $\phi \in \operatorname{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.
- For $a \in D(X)$, say $a = \{a_n\}$, we find open sets U_n with disjoint closure such that $a_n \in U_n$. Note that $\prod C_0(U_n) / \bigoplus C_0(U_n) \subseteq C(X^*)$.
- The goal is to produce a nice lifting of $\tilde{\phi} \upharpoonright \prod C_0(U_n) / \bigoplus C_0(U_n)$

- If $\phi \in \text{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.
- For $a \in D(X)$, say $a = \{a_n\}$, we find open sets U_n with disjoint closure such that $a_n \in U_n$. Note that $\prod C_0(U_n) / \bigoplus C_0(U_n) \subseteq C(X^*)$.
- The goal is to produce a nice lifting of $ilde{\phi} \upharpoonright \prod C_0(U_n) / \bigoplus C_0(U_n)$
- We use the finite-dimensional approximation property of C(X*) to filter ∏ C₀(U_n)/⊕ C₀(U_n) into a net, indexed by (N^N, ≤*), of spaces of the form ∏ E_n/⊕ E_n with E_n finite-dimensional Banach spaces.

Assume Forcing Axioms and suppose that X is connected and second-countable. Then all homeomorphisms of X^* have a local representation. So they're all trivial.

- If $\phi \in \text{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.
- For $a \in D(X)$, say $a = \{a_n\}$, we find open sets U_n with disjoint closure such that $a_n \in U_n$. Note that $\prod C_0(U_n) / \bigoplus C_0(U_n) \subseteq C(X^*)$.
- The goal is to produce a nice lifting of $ilde{\phi} \upharpoonright \prod C_0(U_n) / \bigoplus C_0(U_n)$
- We use the finite-dimensional approximation property of C(X*) to filter ∏ C₀(U_n)/⊕ C₀(U_n) into a net, indexed by (ℕ^ℕ, ≤*), of spaces of the form ∏ E_n/⊕ E_n with E_n finite-dimensional Banach spaces.
- We then apply a very technical lifting theorem of McKenney and V. for well behaved maps whose domain is of the form $\prod E_n / \bigoplus E_n \to C(X^*)$, where E_n are finite-dimensional Banach spaces.

イロト イポト イヨト イヨト 二日

Assume Forcing Axioms and suppose that X is connected and second-countable. Then all homeomorphisms of X^* have a local representation. So they're all trivial.

- If $\phi \in \text{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.
- For $a \in D(X)$, say $a = \{a_n\}$, we find open sets U_n with disjoint closure such that $a_n \in U_n$. Note that $\prod C_0(U_n) / \bigoplus C_0(U_n) \subseteq C(X^*)$.
- The goal is to produce a nice lifting of $ilde{\phi} \upharpoonright \prod C_0(U_n) / \bigoplus C_0(U_n)$
- We use the finite-dimensional approximation property of C(X*) to filter ∏ C₀(U_n)/⊕ C₀(U_n) into a net, indexed by (ℕ^ℕ, ≤*), of spaces of the form ∏ E_n/⊕ E_n with E_n finite-dimensional Banach spaces.
- We then apply a very technical lifting theorem of McKenney and V. for well behaved maps whose domain is of the form $\prod E_n / \bigoplus E_n \to C(X^*)$, where E_n are finite-dimensional Banach spaces. We produce "nice" liftings $\prod E_n \to C_b(X)$, again indexed by $(\mathbb{N}^{\mathbb{N}}, \leq^*)$.

- If $\phi \in \operatorname{Homeo}(X^*)$, let $\tilde{\phi}$ the dual automorphism of $C(X^*)$.
- For $a \in D(X)$, say $a = \{a_n\}$, we find open sets U_n with disjoint closure such that $a_n \in U_n$. Note that $\prod C_0(U_n) / \bigoplus C_0(U_n) \subseteq C(X^*)$.
- The goal is to produce a nice lifting of $ilde{\phi} \upharpoonright \prod C_0(U_n) / \bigoplus C_0(U_n)$
- We use the finite-dimensional approximation property of C(X*) to filter ∏ C₀(U_n)/⊕ C₀(U_n) into a net, indexed by (ℕ^ℕ, ≤*), of spaces of the form ∏ E_n/⊕ E_n with E_n finite-dimensional Banach spaces.
- We then apply a very technical lifting theorem of McKenney and V. for well behaved maps whose domain is of the form $\prod E_n / \bigoplus E_n \to C(X^*)$, where E_n are finite-dimensional Banach spaces. We produce "nice" liftings $\prod E_n \to C_b(X)$, again indexed by $(\mathbb{N}^{\mathbb{N}}, \leq^*)$. We then use stronger versions of OCA to uniformize these liftings, and then some perturbation theory for C*-algebras, to obtain *-homomorphisms $\prod C_0(U_n) \to C_b(X)$ lifting $\tilde{\phi}$;
- We then use duality to go back to a topological setting and find b such that $\phi[a^*] = b^*$.

Let X be connected and second-countable and assume Forcing Axioms. Then all homeomorphisms of X^* are trivial.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Let X be connected and second-countable and assume Forcing Axioms. Then all homeomorphisms of X^* are trivial.

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = [0, 1), X = \mathbb{R}$	Yu (but see K.P. Hart)	V.
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah, Farah-Shelah	
X manifold	V.	V.
X connected		V.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 の��

What if X is non connected?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

900

19/22

E

PFA: Disconnected spaces

What if X is non connected? If $X = \sqcup X_i$, where each X_i is compact and connected, similar techniques to the ones of Farah-McKenney, again making heavy use of the lifting theorem of McKenney-V. and of some perturbation theory lead to the following

Theorem (McKenney-V.)

Let $X = \sqcup X_i$ where X_i is compact, second-countable and connected. Assume Forcing Axioms. Then

• all homeomorphisms of X* are trivial

Theorem (McKenney-V.)

Let $X = \sqcup X_i$ where X_i is compact, second-countable and connected. Assume Forcing Axioms. Then

- all homeomorphisms of X* are trivial
- If Y = □Y_i, where each Y_i is compact, second-countable and connected, then X* and Y* are homeomorphic if and only if there is a g, an almost perturbation of N, such that ∀[∞] n X_n is homeomorphic to Y_{g(n)}.

Theorem (McKenney-V.)

Let $X = \sqcup X_i$ where X_i is compact, second-countable and connected. Assume Forcing Axioms. Then

- all homeomorphisms of X* are trivial
- If Y = □Y_i, where each Y_i is compact, second-countable and connected, then X* and Y* are homeomorphic if and only if there is a g, an almost perturbation of N, such that ∀[∞] n X_n is homeomorphic to Y_{g(n)}.

Theorem (Farah-Shelah + Ghasemi)

Assume CH. There are connected compact spaces X_n and Y_n such that no X_n is homeomorphic to Y_n but, if $X = \sqcup X_n$ and $Y = \sqcup Y_n$, X^* and Y^* are homeomorphic.

イロト イ部ト イモト イモト 一日

Theorem (McKenney-V.)

Let $X = \sqcup X_i$ where X_i is compact, second-countable and connected. Assume Forcing Axioms. Then

- all homeomorphisms of X* are trivial
- If Y = ⊔Y_i, where each Y_i is compact, second-countable and connected, then X^{*} and Y^{*} are homeomorphic if and only if there is a g, an almost perturbation of N, such that ∀[∞] n X_n is homeomorphic to Y_{g(n)}.

Theorem (Farah-Shelah + Ghasemi)

Assume CH. There are connected compact spaces X_n and Y_n such that no X_n is homeomorphic to Y_n but, if $X = \sqcup X_n$ and $Y = \sqcup Y_n$, X^* and Y^* are homeomorphic.

If X is disconnected but not of the form $X = \sqcup X_i$: work in progress.

・ロト ・四ト ・ヨト ・ヨト

	$CH \Rightarrow \exists$ nontrivial	Forcing Axioms \Rightarrow all trivial
$X = \mathbb{N}$	Rudin	Velickovic
dim(X) = 0	Parovicenko	Farah, Farah-McKenney
$X = [0, 1), X = \mathbb{R}$	Yu (but see K.P. Hart)	V.
$X = \bigsqcup X_i, X_i$ cpct	Coskey-Farah, Farah-Shelah	McKenney-V.
X manifold	V.	V.
X connected		V.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 20/22

Assume Forcing Axioms and let X, Y be connected and second-countable. Then X^{*} is homeomorphic to Y^{*} only if there are compact $K_1 \subseteq X$ and $K_2 \subseteq Y$ such that $X \setminus K_1$ is homeomorphic to $Y \setminus K_2$.

Assume Forcing Axioms and let X, Y be connected and second-countable. Then X^{*} is homeomorphic to Y^{*} only if there are compact $K_1 \subseteq X$ and $K_2 \subseteq Y$ such that $X \setminus K_1$ is homeomorphic to $Y \setminus K_2$.

Question

Is there a second-countable Y such that under CH Y^{*} is homeomorphic to $(\mathbb{R}^n)^*$, for some $n \in \mathbb{N}$, but under Forcing Axioms this is not the case?

Thank you!

イロト イヨト イヨト イヨト

æ

୬**୯** _{22/22}